
Cooperators’ Journey towards

Microservice Architecture &
Enterprise Integration Hub

Shahram Jalaliniya
Architecture, IT Strategy &
Applied Innovation

Sep 2021

Agenda
• Who am I?
• The Cooperators Company
• Cooperators Strategies
• Architecture, IT Strategy & Applied Innovation Team
• Cooperators’ Microservices Journey
• Enterprise Integration Hub
• Enterprise Service Reference Architecture
• Future Expansion

– Service Mesh
– Enterprise Business Process Automation

MSc in Software and Technology
PhD in Computer Science
UX wearable computers @ healthcare

2016

MSc. Information Systems

BSc

PhD

2002

MSc

Working as IT Consultant in Haseb
System, ISIran, Infotech, etc.

Industrial Engineering

2011

2016-3
Postdoc

Postdoc
2016-6

Gaze IT: Gaze interaction
for motor disabled people

Internet of Things &
People Research Center
Malmo University

Now

MSc

2014

Enterprise Architect

Part-time Professor2018

Shahram Jalaliniya

75 years strong

Established in 1945 by a group of farmers to provide
financial security for their families and communities

Decision making is guided by co-operative principles

Take a long-term view, balancing profitability with
client and community needs

Offices
from coast

to coast

• 6,454 employees
• 2,303 licenced insurance representatives
• Serve 238 credit unions; more than 5.2 million members

Source: The Co-operators 2020 Integrated Annual Report

The Co-operators:
A wealth of experience

Property & Casualty Insurance
• We insure more than 890,000 homes and more than 1.5 million

vehicles
• We provide coverage for 41,000 farms and 265,000 businesses

Life insurance
• We protect 522,000 lives
• We insure 230,000 employees through Group Benefits plans
• We offer a wide range of Wealth Management products
• We provide Creditor Life insurance to 545,000 Canadians

Investments
• We manage assets for 171 institutions including pensions, insurance

companies, co-operatives, endowments, and foundations.
• Mutual funds are available through Co-operators Financial

Investment Services Inc.

The Co-operators Group Limited is a leading Canadian co-operative,
which offers multi-line financial services and insurance with $47.4
billion in assets under administration. Our group of companies provides
financial solutions and security through property and casualty
insurance, life insurance, wealth management solutions, institutional
asset management, and brokerage operations.

Source: The Co-operators 2020 Integrated Annual Report

Market share of the
leading private P&C
companies in
Canada in 2019

Number 4

Source: https://www.statista.com/

Our Strategy: A bridge to the future

Strategic Plan: 2019 to 2022

Digital &
MarCom

CLIC &
CUMIS Life

Advisors &
ACC

CGIC
CUMIS

General
COSECO

COLT (Cooperators Operation Leader Team)

Mandate:
To ensure successful strategic alignment and execution of The Co-operators

business strategies and priorities over the next 4 years.

Emmie Fukuchi, EVP, Chief Digital and
Marketing Officer

Alec Blundell, EVP, Chief Operating Officer,
CLIC; President and COO CUMIS

Lisa Guglietti, EVP, COO, P&C Manufacturing

Kevin Daniel, EVP, Chief Client Officer

Carol Poulsen, EVP, Chief Information Officer

Key
Responsibilities

Align, drive integration, and execute on our enterprise
strategies

Ensure clarity and alignment for operational priorities,
timing and expected outcomes

Surface and resolve emerging issues, concerns, and risks
that impact the execution and success of our strategy

Define and hold the organization accountable to ensure
success metrics are achieved

Share direction and outcomes that clearly articulate
action & support required across the enterprise

Key Responsibilities

COLT set priorities to make sure that we build the future

Strategy

CMG sets Strategy and
Organization

Objectives

COLT sets Priorities &
Direction

Assess Systems
Readiness relative to
Business Capability

Priorities

Measure Performance
Identity “Hot” Spots

IT Landscape
Assessment

Governance

Performance

Information
Architecture

Process Architecture

Organization
Architecture

Business Architecture

Application Architecture

Infrastructure
Architecture

IT Architecture

Planning
Projects and
Resources

Acquisition and
Implementation

Activities

Deliver & Support
Activities

Planning

Acquisition & Development

Operations & Support

Reference
Architecture

Enterprise Architecture helps with connecting
strategies to everyday tasks and projects

Data Architecture

Enterprise Project Management Office

A Lean Team of 9 Enterprise Architects are assigned to IT horizontals
(data/system/tech/etc.) & business verticals (line of business)

CIO

VP of Enterprise
Architecture

Enterprise
Architect

(Integration)

Enterprise
Architect

(Data & Analytics)

Enterprise
Architect

(Cloud)

Enterprise
Architect

(Services)

Enterprise
Architect

(IoT)

VP of Life VP of Wealth VP of P&C VP of Commercial
Insurance VP of IT Operations

Enterprise Architecture will lead Digital Innovation

By 2023, 60% of organizations will depend on EA’s
role to lead the business approach to digital
innovation

Enterprise Architecture Driving Innovation

• Internet of Things
• On-demand Insurance

• Microservices
• Enterprise Integration Hub

…

How do innovative companies leverage technology?

1

2

3

4

Technology is a competitive advantage

Treat technology as an investment

Use technology to mitigate risk

Technology is a core capability

5 Not afraid to change technology

Our Transformation Journey: Moving to Cloud

Security

UX Strategy

API Strategy

Microservices Architecture

Automated Infrastructure

Cloud Hosting

CI/CD - Automated
Build,Test & Release

DevOps Process

Agile Process

Development Delivery

Infrastructure Operations
{ { {

Technology Process People

Our Transformation Journey

Design Thinking

Change is all encompassing and far-reaching.

Digital Consultancy

Microservices

“Innovation at the edges will
never work if our core systems

are locked up.”

Microservices – what are they and why should we
care

When to use and how do we accelerate adoption?

Cooperators’ microservices journey

How about Microservices for Greenfield vs.
Brownfield

Discussion

Modernization Strategy & Case Studies

Microservices
Introduction

4

Microservices architecture involves building applications as
small, loosely coupled, reusable, autonomous components

• Monolithic applications are
one large application
that does everything

• Microservices are several
smaller reusable
applications that each
does part of the whole

• Microservices are focused
on reusable business
capabilities, concentrating
on business APIs

• Enables building and
running cloud native
apps that exploit the
advantages of
the cloud computing
delivery model.

§ Tightly coupled
§ Full dependency; each

change has unanticipated
effects requiring careful
testing beforehand

§ Large, single code base
(e.g., capability)

§ Loosely coupled
§ Reduced dependencies;

elements are developed
more autonomously, but
must be coordinated to fit
overall design

§ Greater modularity (e.g.,
domain)

Monolithic Traditional SOA Microservices

Client Server Era Web Era Cloud Era

§ Decoupled
§ Zero dependency; new

and/or modified
functionality can by
independently deployable

§ Small components that
perform a discrete functions
(e.g., feature)

Team Team

Team Team

5

Benefits of the
Microservices
architectural style

Microservices provide value benefit
through:

1. Selective granular scaling provides
optimization across all layers of the
stack

2. Componentization isolates risks,
defects and outages, resulting in
greater fault tolerance

3. Designed for fast & frequent change,
reusability; unleashed polyglot
programming

2Resilience

Fault Isolation
1 Scale

Scale at Size

3 Agility

Innovation

Lightweight SW code, focused on doing
one function well Functionally & operationallyself-contained

Minimal interdependencies withother
components

Deployed, Maintained, Managed, Scaled
independently

“Open” - can be run on bare OS,
Container, Foundry etc

Interoperability – REST API is typical
interfacing mechanism

Every Microservice can be developed in a
different programming language

With thoughtful implementation of well-accepted
design patterns, enables highly resilientsystems

4
Polyglot

Flexibility

5

6

Teams work
independently

Distributed

Why should I care if I mostly rely on software
vendors?

Architect for plug and play

When to use
Microservices

• Need to deliver reusable business capabilities
ü Improved ROI with reduced TCO

• Services need to be highly available and
continue to be available through component
failure

ü Increased resilience
ü Continuous delivery

• Services are likely to have frequent changes
which need to be made safely with little or no
outage

ü Easier debugging and maintenance
ü Faster time to market

• Services are likely to have to scale for
significant peak loads or for future growth

ü Improved scalability

• Agile / MVP approach
• DevOps culture
• Design with failure in mind
• Robust monitoring
• CI/CD
• Rapid provisioning and app deployment

To accelerate microservices,
we need:

Impact across organization, not just technology

Technology ArchitectureOrganizational Design DevOps Processes/Capabilities

Dev
Service Gateway

Service
A

Service
B

Service
C

QA

Ops DBA

Support Security

Traditional Organization DevOps OrganizationVS

Build and Deployment with Microservices

source
repository

CI/CD
engine

dev service

Physical Or Virtual

Public Or
Private Cloud

Developer, QA,
Business,

Production
Support

EA leading the build of initial microservices

EA

EIS
IBM/
SDS

EIOS

Service
Owner
SDS

Service
Consumer

Security
 requirements

RequirementsTest

Development

Design MS

Transitio
n MS Operationalizing

Design M
S

How about
Microservices for
Greenfield vs.
Brownfield?

1
1

Microservices Considerations for
Greenfield vs. Brownfield

12

Greenfield (NewApplication)

• Clean slate in defining Microservice
architecture

• Apply Domain DrivenDesign
principles

• Commercial Credit Score

• HomeToBe / Duuo

• Address Validation & Completion

• Admin Service

• Advisor Assist

• … etc.

Brownfield (ExistingApplication)

• Strangle the Monolith over time with
new microservices

• Identify reusable, loosely coupled,
autonomous, independent, frequently
changing parts of the monolithic and
develop a microservice

• Consider data redundancy if microservice
has a lot of data exchange with other parts
of monolithic

HomeToBe: Address
completion for
Property Addresses

Quote&Buy: Client
Address Validation

API
Canada Post API

Admin service

Service Name: Address Description: The address service allows consumers to
validate/complete a given address based on the Canada post standard.

Consumer Tasks Interface Dependencies

Qualities

- Read only
- Low volume service
- Non-transactional

Logic/Rules

- Lookup the potential
addresses in real-time
while user types the
address
- Validates/corrects a
given address using
Canada Post API

Data

API Connect

Address Validation Microservice

Real-time Personal
Credit Score Request
for a single person

Batch Personal
Credit Score Request
for multiple persons

API
TransUnion API

Admin service

Service Name: Personal Credit Score
Description: The personal credit score service returns credit score of
a given person from Trans Union API. It also stores the score in a local
database for future use.

Consumer Tasks Interface Dependencies

Qualities

- Read only
- Low volume service
- Non-transactional

Logic/Rules

Searches the credit score
of a given person(s) in
the local database and
returns the score. If the
score dost not exist in
the database or it is old,
the services calls the
TransUnion API and
returns the score and
stores it in the database.

Data

- Personal credit
score local database

API Connect

Query
- Get Personal Credit Score

Personal Credit Score Microservice

Real-time Commercial
Credit Score Request for a
single company

Batch Commercial Credit
Score Request for
multiple companies API

D&B Credit Score
Service (Custom
API developed by
D&B for CGL)

Admin service

Service Name: Commercial Credit Score

Description: Provides a front end to services provided by Dun&Bradstreet to
retrieve commercial credit reports for businesses. Incorporates a real-time look up
and an optional batch interface. Incorporates a caching mechanism to minimize
the reports being retrieved from D&B

Consumer Tasks Interface Dependencies

Qualities

- Read only
- Low volume service
- Non-transactional

Logic/Rules

Searches the credit score
of a given company(s) in
the local database and
returns the score. If the
score dost not exist in
the database or it is old,
the services calls the
D&B API and returns the
score and stores it in the
database.

Data

- Commercial credit
score local database

API Connect

Query
- Search by company name
Retrieve by DUNS #

A Sovereign broker uses
UM search for a client and
retrieve their

Policy Center retrieves a
commercial credit score
report

Commercial Credit Score Microservice

Calculates charge
back on service
usage and the
platform usage

Provide email service

Command

Service Name: Admin Service
Description: Admin service calculate charge back on usage and
platform and also provides the email functionality for
communication between service providers and consumers.

Consumer Tasks Interface Dependencies

Qualities

- Low volume service
- Transactional

Logic/Rules

- When the user
subscribes to the APIs,
the service owner
approves the user and
user is authorized for
using API. The user
receives the invoice for
using API and platform
periodically.

Data

- API usage
- Authorized users

API Connect

Query
- The service lookup the API usage
from APIC periodically

Event Subscriptions
- The API is called by users
- User subscribes to the API

Event Publications

Admin Microservice

SG Broker using
Underwriting
Management pushes
policy summary info to
PR database

SG Broker using
Underwriting
Management pulls
property rates from PR
database

Queries:
• Retrieve property rates

Commands:
• Write submission summary Property Rater

spreadsheet (also
connected via Visual
Basic to the Property
Rater DB)

API Connect

Service Name:
Property Rater

Description: The property rater service provides a mechanism to
exchange information with a Sovereign General rating worksheet

Consumer Tasks Interface Dependencies

Qualities Logic/Rules Data
• Sovereign Property

Rater SQL Server
Database

Property Rater Microservice

A Sovereign broker using
UM to attach or retrieve a
document associated with
a submission

Query:
• Search by meta data
• Retrieve by key
• Retrieve data by key

Commands:
• Store document data OnBase Implementation

is internal “DotNet”
application and
database

API Connect

Service Name: OnBase Description: This service searches, stores and retrieves
documents from Co-operators OnBase services

Consumer Tasks Interface Dependencies

Qualities Logic/Rules Data

OnBase Microservice

A Sovereign broker initiates a
GDM request to determine if
they should proceed to
provide a quote

Query:
Get GDM (by Submission#)

Uses: Commercial Credit
Score service

API Connect

Service Name: SG Global Decision Maker
Description: Uses a customized algorithm to create a simplified indicator on
whether to quote a submission based on information retrieved from
commercial credit score (Red – Do not Quote, Yellow – Underwriter
assessment required, Green – Proceed to Quote)

Consumer Tasks Interface Dependencies

Qualities
• Read Only

Logic/Rules Data

Decision Maker Microservice

How do we decompose
existing monoliths, how
do we deal with data,

etc.

1
3

How do we decompose an existing monolithic
1. Separate databases before

separating services.

2. Place existing transactions
within a single service or
redesign the transactionusage
(compensating/eventual
consistency).

3. Consider the team
composition.

4. Implement new featuresas
microservices around the
existing monolith.

Tenets of the
Microservices

Architectural Style

7

Tenets of the Microservices Architectural style

Large monoliths
are brokendown
into many small
services

Services are
optimized fora
singlefunction

Communicationvia
REST APIand
messagebrokers

Per-service
continuous
integrationand
continuous
deployment
(CI/CD)

Per-servicehigh
availability (HA)
and clustering
decisions

Each service runs inits
own process

One serviceper
container

There is only one
business functionper
service

The Single
Responsibility Principle
(A microserviceshould
have one, and only
one, reason to change)

Avoid tight coupling
introduced by
communication through
a database

Services evolveat
different rates

You let the system
evolve but set
architectural principles
to guide that evolution

One size or scaling
policy is not appropriate
for all

Not all services need to
scale; others require
autoscaling up to large
numbers

When not do Microservice

• To keep a system simple - resist dividing what is cohesive!
• Generally, smaller systems are easier to build and maintain

than large ones. But all is trade offs, and given one system
to design:
– reducing the size of its components
– increases the frequency and complexity of messaging between

components.
• Microservices Require Cultural Changes (DevOps)

Enterprise Integration Hub 2019

• In 2019, microservices were running in IBM Cloud supported
by IBM developers (life boat)

• We needed a cloud environment managed/supported by our
operation and application development teams

• We were tired of point-to-point/LoB integrations and needed
to move to API-based integration

• Enterprise Integration Hub was born in 2019 to address above
needs.

Enterprise Integration Hub 2019

RoadMap to Increasing Integration Agility

Monolithic Point-to-Point Line of Business Service Bus Enterprise Integration Hub
• Direct Integration
• Point-to-Point patterns
• Limited reusability and

extensibility

• FederaWing LOBªV agiliW\
• ProYide LOBªV aXWonom\ Wo

continue to leverage heritage
technologies and core expertise

• Reusable functionality in
small, independent,
scalable containers

• Standard, platform
independent gateway to
connect to legacy

CGIC
Domain

ESB

Life
Domain

ESB

-Platform Zero
-Sales Force
-Etc

This is our direction in ALL cases.

System Integration

A Platform to Integrate
different systems

Enterprise Integration Hub Scope 2019

Microservices

A Platform to Develop and Deploy
Microservices

Reusable Services

A Platform to Facilitate Reusing
Microservices (Security,

Monetization, etc.)

EIH Project Scope (WBS)
Enterprise Integration

Platform project

Design &
Operationalize the
integration platform

Change managementOperationalize
enterprise services

Operationalize existing
cloud services

Design the architecture of
the integration platform

Create design patterns for
integration

Acquire the integration
platform components

Operationalize & manage
the integration platform

1 week workshop
for designing the

platform

Create the project
plan

Integration
requirements

analysis

Define and complete
a cloud-to-cloud

integration project

Define and complete
a prem-to-cloud

integration project

Define and complete
a prem-to-prem

integration project

Document the
integration patterns

as integration
reference architecture

Purchase physical/
virtual hardware

Purchase software
licenses

Install and configure
the software and

hardware platforms

Training Governance

Design and
implement Ops

processes

Install operational
and performance
monitoring tools

Security requirements
analysis

Implement processes/
tools to address security

concerns

PEN test

Operationalize new cloud
services

Train at least 10
software developers
from SDS to use the

platform

Develop a training
plan based on the

platform requirements

Train at least 4 EIOS
specialists to support

the platform

Train 1 EIOS
specialist for

managing platform

Train 2 enterprise
integration architects

Socialize project
goals &

achievements

Form the steering
committee and set up

monthly meetings

Establish processes
& structure for

integration projects

Synchronize with
SG’s integration

project

Design and implement
processes and tools for
managing the platform

Select & install
active monitoring &

alerting tools

Define Op’s
requirements for

processes

Define
responsibilities &

processes

Understand security
concerns & address

them through
processes/tools

Select & install
active monitoring &

alerting tools

Define Op’s
requirements for

processes

Define
responsibilities &

processes

Understand security
concerns & address

them through
processes/tools

Operationalize SG’s
integration services

Select & install
active monitoring &

alerting tools

Define Op’s
requirements for

processes

Define
responsibilities &

processes

Understand security
concerns & address

them through
processes/tools

Develop change
management strategy

Enterprise Integration Platform (EIH) Component Diagram

Prod Cluster
(us-south)

Non-prod IBM Cluster
(us-south)

API Connect

Security/Logging/Monitoring

Developer
portal API Gateway

API Monitoring
& Analytics

VPN/VPC

Akamai load-balancer for API Connect

Several strategic projects relying on EIH - 2020
OVERLAP

JANUARY
2020

FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER … BEYOND
2020

BRAND STRATEGY

COMMERCIAL GROWTH STRATEGY

CREDITOR CHANNEL EXPANSION

CREDITOR OPERATIONAL ENHANCEMENTS
AND LOS INTEGRATION

DIGITAL STRATEGY

GROUP BENEFITS INTEGRATION &
APPLICATION ENHANCEMENTS

INDIVIDUAL INSURANCE PRODUCT &
OPERATIONAL ENHANCEMENTS

P&C PRODUCT AND PROFITABILITY

P&C UNDERWRITING TRANSFORMATION

WEALTH MANAGEMENT

CRM PLATFORM | FORECAST

DIGITAL STRATEGIC DELIVERY | FORECAST

COOP PAY | FORECAST

CR - UNDERWRITING RE-ENGINEERING 2020 | FORECAST

CR - LOS INTEGRATION LAYER PROJECT | FORECAST: $1.6M

WM - GROUP WEALTH / RETIREMENT SERVICES PROGRAM | FORECAST

WM - INDIVIDUAL (RETAIL) WEALTH PROGRAM | FORECAST

Key Insights:
- Should deal with risks by Q3 since most overlaps happen in Q3 & Q4
- Big overlap between eCX and CRM for integration services requires synergy between integration teams
- Most overlaps for Brand strategy, Wealth management, & Digital StrategyLess More

Forecast Cost

Our processes & capabilities were not fully developed

4. Deployment
& Operations

3. Day-2
Maintenance

2. Day-1
Creation

Our process and capabilities are not fully developed

Analysis & Architecture Create Maintain Deploy

1. Analysis
& Architecture

5. Management & Governance for EIH Platform and Microservices

6. Support & Operations for EIH Infrastructure and Operating System Environment

Architecture

Solution Design

ITSD Teams

Solution Design

SecDevOps

Architecture

EIH went through couple of migrations to get stable
• We moved from Lifeboat to Cruise ship
• We moved from Cruise ship to stabilized EIH
• We moved from stabilized EIH to EIH-VPC Gen2

Example moving from Cruise ship to stabilized EIH

Dallas

Non-prod

Prod

DC

New-Non-prod

New-Cold
Back up Prod

Dallas

New-Prod

As Is
To Be

100 developers got trained in EIH Activation &
Enablement Plan to mitigate the skill risk

We defined Service Ownership Model to address the maturity risk

Ecosystem Ownership

Platform Ownership

Policy Management

Service/Application Ownership

SG’s
M

icroservices

Financial management

Address
Validation Service

…

Security/Monitoring/Logging Tools

Kubernetes Dev/Prod Clusters

Com
m

ercial
Credit Score

Service

Individual Credit
Score Service

…

Future Enhancements

…

Initial EIH Service owners (Day 1)
Service or Component Day 1 Owner
Kubernetes Environment Midrange
APIC EA
APIC - akamai LB EA/WH
VPC Midrange
NeuVector SecOps (Dan)
Feature Service * ITSD
Image Build ITSD DevOps
Image Deploy ITSD DevOps
Image Repo (to Image Repo) Midrange
IBM Code Control and Build Repository EA
Other Code and Build Repos ITSD (Various)
Release management (Repo to Non-prod) ITSD DevOps/New 'DevOps' (Gap)
Release management (Non-prod to Prod) ITSD DevOps/New 'DevOps' (Gap)
IBM Continuous Integration Continuous Delivery Pipeline
(ToolChain) New 'DevOps' (Gap)
operational resiliency (namespace backups- storage) Midrange
operational resiliency (namespace backups- restore) Midrange
Monitoring Service Provisioning Midrange
Logging Service Provisioning Midrange
Audit Service Provisioning Midrange

GUIDING
PRINCIPLES
FOR SERVICES

MANAGE SERVICE USAGE
All enterprise services should be exposed through APIC when there is
need for segregated monitoring, monetization, traffic, and/or provide
different service levels

INCREASE SCALABILITY/PORTABILITY
Enterprise services should be containerized specifically
when scalability and portability are necessary

IMPROVE SECURITY
Enterprise services exposed to external consumers/networks/clouds
or services that require a common security layer should be exposed
through APIC because we can control secure access to the services
using API key and other security mechanisms in APIC

REDUCE COMPLEXITY
Containerizing enterprise services reduces the complexity of technology

stack to a single plain

INCREASE REUSABILITY
Enterprise services should be exposed through APIC if

other internal/external developers need to reuse them
from external assets (APIC developer portal capability)

MINIMIZE CHANGE
External services that are used across the enterprise should be
wrapped to protect consuming applications from the impact of

changes to the service provided
External services that require functionality extension beyond the offer

should be wrapped as an enterprise service

How might we determine which enterprise services should be containerized/wrapped/exposed through APIC?

EA Defined Guiding Principles For Enterprise Services

Use Guiding Principles,
• To decide if an external service needs to be wrapped as an enterprise service
• To decide whether an enterprise service needs to be containerized or not
• To decide whether an enterprise service needs to be exposed through APIC or not

Use Case How might we determine if the following services should be
wrapped/containerized/exposed through APIC?

CONTAINERIZED? EXPOSED THROUGH APIC?WRAPPED?

Address
Validation

e-Sign V2

Coop-Pay

• Functionality extension
• Protect internal users from future changes

in external service

• Scalability is required • Monitoring/monetization is required
• Reusable service

• Internal users
• No need for API monitoring/monetization

• Functionality extension
• Protect internal users from future changes

in external service

• Not uses any external service • Scalability is required

• Scalability is required
• Reduce complexity • Monitoring/monetization is required

• Reusable service

Okta
• Separate subscription model• No need for functionality extension

• Standard interface (Oauth)
• There is not internal piece

Problem: An "off the shelf" API offers compelling functionality that we would like to reuse, but its "view of the world" is not compatible
with the requirements/architecture of our systems.

Solution: Adapter/wrapper is about creating an intermediary abstraction that translates, or maps, the old component to the new system.
Clients call methods on the Adapter object which redirects them into calls to the legacy component. Wrapping a service saves the
consumers from future changes (vendor change) and adjusts the services to our needs.

Pattern: When adapter/wrapper pattern is useful
• When multiple application are using the off-the-shelf service (e.g. address

validation)
• When we are using only a subset of functionalities of the service (e.g. CCS)
• When there is need to extend the functionality of the service (e.g. e-signature)
• When there is a possibility to switch to a new vendor (e.g. address validation)
• When aggregating API calls provides greater usage visibility and opportunity for

volume discounting (e.g. CCS)

Architecture:

Anti pattern: When adapter/wrapper pattern might not be suitable
• When wrapping a service introduces new security risks (e.g. Okta service)

Examples:
• Address validation service: this API extends the functionality of Canada post address validation API
• Personal credit scoring: this API encapsulates the TransUnion credit score API and decreases total cost of API calls by storing credit scores in a database
• Commercial credit scoring: this API encapsulates the D&B commercial credit score API and decreases total cost of API calls by aggregating API calls
• E-Signature: this API extends the One Span e-signature service by integrating e-sign service with OnBase which is our document storage system

External
Service

Provider

AP
I Adapter

API
(Wrapper)

Service
Consumers

Adapter/Wrapper Pattern

Problem: A microservice may need access to shared components that perform common tasks, such as monitoring, logging & auditing. It is
not possible to redundantly copy them into the microservice environment because they need to be independently maintained. At the
same time, it may be inefficient for the microservices to remotely interact with them.

Solution: A special ambassador container is created to host virtualized copies of the utility components. The ambassador can be
developed by security/monitoring specialists and be used as a proxy in multiple services. This saves a lot of effort from service developers
since they don’t deal with security/monitoring issues.

Pattern: When ambassador pattern is useful
• When we need to build a common set of client connectivity features for multiple

languages or frameworks.
• When we need to offload client connectivity concerns to infrastructure developers

or other specialized teams.
• When we need to support cloud or cluster connectivity requirements in a legacy

application or an application that is difficult to modify.

Architecture:

Anti pattern: When ambassador pattern might not be suitable
• When the network request latency is critical for our service.
• When client connectivity features are consumed by a single language.
• When it is impossible/complex to generalize connectivity features.

Examples:
In eCX project, the ambassador pattern was used to provide a consistent way to offload:
• mTLS validation for API Connect and the K8 services
• Client authorization to perform service operations
• Circuit breaking rules

Ambassador Pattern

Problem: In a microservices architecture, the client apps usually need to consume functionality from more than one microservice. If that
consumption is performed directly, the client needs to handle multiple calls to microservice endpoints. When the application evolves and
new microservices are introduced or existing microservices are updated, handling so many endpoints from the client apps can be a very
difficult.

Solution: An API gateway is a service that is the single-entry point for API requests into an application from outside the firewall. API
gateway encapsulates the application’s internal architecture and provides an API to its clients. It also has other responsibilities such
authentication, monitoring, and rate limiting.

Pattern: When API gateway pattern is useful
• When our enterprise service is used by more than one user group/application
• When we anticipate to change/switch our backend service in the future
• When we need to monitor/segregate/limit traffic to our service for each user
• When we have external service consumers
• When our service is exposed to the internet/other clouds/external networks
• When our service requires a common security layer

Architecture:

Anti pattern: When API gateway pattern might not be suitable
• When all service users are internal and there is no need for

monitoring/monetization/a common security layer (e.g. Coop-Pay)

Examples:
All microservices: are exposed through API gateway (APIC) due to the need for monitoring/monetization/common security layer

Client

API gateway Microservice
1

Microservice
2

Microservice
3

Microservice
4

- security
- monitoring
- LB
- transforming
- …

API Gateway Pattern

In our current Integration platform, microservices in K8 can only
interact with each other through API gateway which is

• Inefficient (requires extra hop)
• Insecure (requires extra manual work to enable mTLS).

As number of services and K8 environments increases this manual
process is cumbersome and error-prone.

Why Service Mesh?

How might we facilitate microservices interaction in a secure and
efficient way that removes the need for extra manual work?

Inter-microservice communication today is indirect which introduces latency and
despite mTLS exposes the interaction needlessly to public Internet.

IBM Cloud

IKS Cluster

API Connect
API Gateway

MS
pod

service

MS
pod

MS
pod

ingress gateway

service

MS
pod

Commercial Credit Score

Ingress service
credit-prod.cglcloud.ca

SG GDM

Service
Consumer

Istio is a commercial open-source service-mesh technology that
connects, monitors, and secures the containers in a Kubernetes
cluster. It provides a set of security features, namely:
ü Traffic encryption
ü Security audit
ü Mutual TLS
ü Fine-grained access policies

Istio connects monitors and secures inter-microservices communication

Solution Options: Istio outperforms its competitors

Supported Workloads Does it support both VMs-based applications and Kubernetes?
Workloads Kubernetes + VMs Kubernetes only Kubernetes + VMs
Architecture The solution’s architecture has implications on operation overhead.
Single point of failure No – uses sidecar per pod No No. But added complexity managing HA
Sidecar Proxy Yes (Envoy) Yes Yes (Envoy)
Per-node agent No No Yes
Secure Communication All services support mutual TLS encryption (mTLS), and native certificate management so that you can rotate certificates or revoke them if they are compromised.
mTLS Yes Yes Yes
Certificate Management Yes Yes Yes
Authentication and Authorization Yes Yes Yes
Communication Protocols
TCP Yes Yes Yes
HTTP/1.x Yes Yes Yes
HTTP/2 Yes Yes Yes
gRPC Yes Yes Yes
Traffic Management
Blue/Green Deployments Yes Yes Yes
Circuit Breaking Yes No Yes
Fault Injection Yes Yes Yes
Rate Limiting Yes No Yes
Chaos Monkey-style Testing Traffic management features allow you to introduce delays or failures to some of the requests in order to improve the resiliency of your system and harden your operations
Testing Yes Limited No
Observability In order to identify and troubleshoot incidents, you need distributed monitoring and tracing.
Monitoring Yes, with Prometheus Yes, with Prometheus Yes, with Prometheus
Distributed Tracing Yes Some Yes
Multicluster Support
Multicluster Yes No Yes
Installation
Deployment Install via Helm and Operator Helm Helm
Operations Complexity How difficult is it to install, configure and operate
Complexity High Low Medium

Istio adoption is higher for production use

Deploy service mesh (Istio) for direct inter-microservice interactions

IBM Cloud

IKS Cluster

Istio Mesh

API Connect

API Gateway

MS
pod

service

MS
pod

Self-signed Certificate:
apic
-- Vanilla CA

Certificate:
credit-prod.cglcloud.ca
.. Iks-prod-ca.cglcloud.ca
... Entrust Certification Authority - L1K

HTTPS with mTLS

Service
Consumer https://api.us.apiconnect.ibmcloud.com/coopservices-api/credit/v1/

X

Certificate:
*.apiconnect.ibmcloud.com
.. DigiCert SHA2 Secure Server CA
…. DigiCert Global Root CA (public CA)

MS
pod

Istio (Ingress)
gateway

service

MS
pod

Istio (Ingress)
gateway

credit-prod.cglcloud.ca

K8s Secret
signed keypair for

credit-prod.cglcloud.ca

400 Bad Request
No required SSL certificate was sent

HTTPS

Cert-manager

Issuer
keypair: Iks-prod-ca.cglcloud.ca

Certificate:

Iks-prod-ca.cgl.cloud.ca
.. Entrust Certification Authority - L1K
(public CA)

signed keypair for
apic

HTTPS with mTLS

Commercial Credit ScoreSG GDM

Proof of Value Success Criteria

Use Case Success criteria

Deploy cert manager • Remove the time developers spend on adding cert management to each
microservice since cert manager does it as part of the platform services

• Remove the time we spend on managing certs during use of a
microservice

• Remove the incidents related to expired certs
• Minimize impact on existing services due to enabling the service mesh

Deploy Service Mesh • Reduce security risk of service-to-service connections in IKS because we
do not need to go through public internet and API gateway.

• Reduces traffic of API gateway for microservice-to-microservice
interactions

• Improve responsiveness (quality) of the services that are composed of
other services by removing IKSßà APIC ßà IKS traffic

• Minimize impact on existing services due to enabling the service mesh

Why Enterprise Business Process Automation (EBPA)?

• We have business processes that interact with our employees,
advisors, partners and/or clients. These processes glue together
several business capabilities and span internally and externally
across multiple applications, stakeholders and lines of business.

• How might we integrate our enterprise services to deliver
business processes in a consistent manner across internal and
external consumers while maximizing reuse, change agility and
reducing risks?

Microservices Orchestration VS Choreography

• A central service as
orchestrator or process flow
engine

• Pros:
– Mature BPM products
– Easier to introduce human

interaction
– Easy to maintain business

processes in one center
• Cons:

– Services are tightly coupled to the
central service

– Similar to monolith
– Central service is SPF

• Decentralizing decisions, logic
& interactions between
services via Events published
by an Event Broker

• Pros:
– Low coupling of services
– Works better with agile delivery
– Higher performance (faster)

• Cons:
– Difficult to maintain since business

process are spread across multiple
services (no notion of process)

– Managing transactions e.g. error
handling is much more difficult

– Needs custom development for
human interaction

Enterprise BPA: a hybrid approach
Enterprise BPA includes a central orchestration
service that manages the business processes
through an event broker that communicates to
other services and BPMs through events.

– Easy to manage & monitor complex business
processes

– Easy to support processes requiring Human
interactions

– Decoupling services from each other
– Reduce blocking
– Scalability (each event processor can be scaled

separately)
– Enterprise BPA helps us to not lock in a specific

vendor & keep enterprise control of our
integration to change/future extension

Enterprise BPA

Event broker

API gatew
ay

BPM A BPM B

Our Integration Capability Model

Business Process Automation (Enterprise BPA)

Process Orchestration (Camunda)Event Brokering (Kafka)

Governance Operation

Monitoring
(Sysdig)

Logging
(LogDNA)

Security
(NeuVector)

Deployment environment management

Policy Management
(APIC)

API & events
discoverability (APIC)

On-Premises Cloud
(IBM-Azure) Hybrid Multi-cloud

(OpenShift)

Management &
administration
(Service First)

Data Integration

Data
transformation
(Informatica)

API Management (APIC)

Cloud gatewayLocal app
gateway

Analytics/
Monitoring

Developer
portal

Authentication/
Authorization (Okta)

Financial management

Business process
governance

Security governance

API Lifecycle
Management

Cloud Platform
Management

Message
Brokering (IIB)

Workflow
Engine Form Builder Access Control

Process
Modeling

Reporting/
Analytics

Distributing
business events

Event stream
processing

Capturing
business events

Non-existing
Capability

Existing
CapabilityLegend:

Connectivity
(VPN/securegateway)

Deployment
management (Helm)

CI/CD Pipeline
(Jenkins, Bitbucket …)

Engagement

§ Client/advisors/partners
Interaction Points

§ Omni-channel Interaction

Automation

§ Handles interaction
between SoE and SoR
layers

§ Includes Enterprise
Integration Hub (API
Gateway, K8 clusters)
and enterprise process
choreographer (Event
broker & BPMN)

System of Record

§ Includes all enterprise
systems, enterprise
services, APIs and
external services/data
sources

Target Integration Architecture

LifeP&C

Non-containerized env.

Enterprise Services

Kubernetes Clusters

Advisor Experience Platform EX (Contact Center & Ops Platform)

Systems
Of Record

Layer

Client Experience (CX) Platform
System of

Engagement
Layer

GW Claims

Identity
Mgnt

DataFile
API

Client
Micro App

P&C
Claim API Analytics API

SaaS 1SaaS 2

API SaaS 1API SaaS 2

Advisor/
EE Apps

Partner
Apps

API Connect

Enterprise BPA

Security/
Monitoring
/Logging

System of
Automation

Layer

GW Billing

Advisor/
EE Apps

Partner
Apps

GW Billing
API

Ingenium
API

Commercial
Credit Score

Event broker
(e.g. Apache

Kafka)

Business Process
Orchestrator
(e.g. BPMN)

GW Policy OthersIngenium

Wealth

OthersDataFile Analytics

SalesforcePlatform Zero Salesforce

Akamai Load Balancer

Embedded
micro-app

Example 1 for enterprise process: Flood claims-home cleaning process

Kubernetes

Enterprise P&C Claim API

P0 (CX Platform)

Sy
st

em
 o

f
en

ga
ge

m
en

t
Sy

st
em

 o
f A

ut
om

at
io

n
Sy

st
em

 o
f

Re
co

rd
s

Enterprise BPA

A claim is
registered

Confirmation
received

PAS (Guidewire)

Retrieve
the policy

API Connect

Mobile app/Web

Channel Process
Receive

claim
Notify

customer

Claim is
accepted

Claim Center

Registers
claim

Control
coverage

Make
decision

Salesforce (AX/EX Platform)

Notification to
cleanup crewReceive

confirmation

Cleaning status
update

Start cleaning
process

Status of
cleaning process

Cleaning crew
is assigned

Cleaning is
finished

Close
Cleaning

Security/
monitoring

/logging

Suggest
cleaning

Arrange
cleaning

Legend

Event

Integration
Process

Internal
process

Demo of EBPA prototype flood claims-home cleaning process

Enterprise
product service

A pilot use case for EBPA

Summary
• Digital transformation is a vital part of Cooperators strategy
• EIH & Microservices are important enablers for digital transformation
• Success in microservices deployment requires change in culture, skill, processes,

and technology (maybe the easiest one)
• A mature, stable, resilient, and easy to use cloud platform (PaaS) is a must for

microservices success
• Technology is a changing target (we need to make fast decisions)
• We need to fail faster and not afraid of failing (being more agile)
• Microservices increase complexity and data redundancy. We should be careful

when we decompose our monolithic applications to microservices
• Service Mesh and EBPA are important technologies to facilitate microservice-to-

microservice interactions
• EA can align the whole enterprise towards a successful migration from

monolithic to microservice architecture

Thank you

